Direct effects of platelet-activating factor on isolated rat osteoclasts. Rapid elevation of intracellular free calcium and transient retraction of pseudopods.
نویسندگان
چکیده
Platelet-activating factor (PAF, 1-O-alkyl-(2R)-acetylglycero-3-phosphocholine) is a potent inflammatory mediator whose actions on bone cells have not been investigated previously. In this study, we examined effects of PAF on osteoclast morphology and intracellular free calcium. Osteoclasts, the large multinucleated cells responsible for bone resorption, were isolated from neonatal rat long bones, and the cytosolic free calcium concentration ([Ca2+]i) of individual fura-2-loaded cells was monitored by microspectrofluorimetry. In one series of experiments, PAF was applied focally to single, isolated osteoclasts (1 nM to 1 microM racemic mixture, in an application micropipette). Within 10 s of PAF application, [Ca2+]i increased from basal levels of 74 +/- 6 nM to peak levels of 209 +/- 28 nM (mean +/- S.E. of 24 cells responding). These results indicate that PAF acted directly on osteoclasts. In more than 75% of cells tested, PAF, at concentrations greater than or equal to 10 pM (final concentration, in the bath), induced biphasic elevation of [Ca2+]i. This response was highly specific for PAF, in that vehicle, lyso-PAF (the biologically inactive precursor/metabolite of PAF), and (S)-PAF (the inactive enantiomer of PAF) all failed to change [Ca2+]i. Moreover, [Ca2+]i elevation was blocked by the specific PAF antagonist CV-3988. To determine the source of Ca2+, cells were bathed in Ca(2+)-free medium, where PAF still caused an increase in [Ca2+]i, establishing that the response to PAF arose, at least in part, by release of Ca2+ from internal stores. In addition to changes in [Ca2+]i, PAF caused retraction followed by respreading of peripheral pseudopods. These findings indicate that rat osteoclasts respond to PAF by release of internal calcium and alterations in cell morphology and suggest that PAF may regulate resorption in inflammatory bone diseases.
منابع مشابه
Prostaglandins, Histamine and Platelet Activating Factor: Different Mediators in Dithranol-Induced Skin Damage
Dithranol is a potent agent in treating psoriasis but its adverse effects on intact skin have limited its usage. There are many proposed mediators for its adverse effects including prostaglandins, histamine, platelet activating factor and free radicals. In this study we examined the effect of different agents (diazepam, terfenadine, indomethacin and garlic extract) on dithranol-induced skin dam...
متن کاملPharmacological Effects of Peganum harmala Seeds Extract on Isolated Rat Uterus
The effects of hydroalcoholic extract of Peganum harmala seeds (EPS) on spontaneous rhythmic contractions of isolated rat uterine was investigated in this study. EPS was tested on the isolated uterus and endometrium free (i.e. stripped myometrium) preparations. EPS was found to exhibit significant spontaneous contractions of the uterus and stripped myometrium relative to the solv...
متن کاملP30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain
Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...
متن کاملInduction of Filopodia by Direct Local Elevation of Intracellular Calcium Ion Concentration
In neuronal growth cones, cycles of filopodial protrusion and retraction are important in growth cone translocation and steering. Alteration in intracellular calcium ion concentration has been shown by several indirect methods to be critically involved in the regulation of filopodial activity. Here, we investigate whether direct elevation of [Ca2+]i, which is restricted in time and space and is...
متن کاملContribution of Fluid Shear Response in Leukocyte to Hemodynamic Resistance in the Spontaneously Hypertensive Rat
The mechanisms for elevation of peripheral vascular resistance in spontaneously hypertensive rats (SHR), a glucocorticoid-dependent form of hypertension, are unresolved. An increase in hemodynamic resistance caused by circulating blood may be a factor. Physiological fluid shear stress induces a variety of responses in circulating leukocytes, including pseudopod retraction. Due to high rigidity,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 266 23 شماره
صفحات -
تاریخ انتشار 1991